If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+4v=30
We move all terms to the left:
v^2+4v-(30)=0
a = 1; b = 4; c = -30;
Δ = b2-4ac
Δ = 42-4·1·(-30)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{34}}{2*1}=\frac{-4-2\sqrt{34}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{34}}{2*1}=\frac{-4+2\sqrt{34}}{2} $
| 6w=85 | | 4(2x-5)=x-7+5x-7 | | |x-3|=-17 | | 2x+7(x+6)=-12 | | 22-17=a | | 1x-x=13x=x | | X+8x5=160 | | 3x=7,810 | | 2(9×4)+2(9×h)+2(4×h)=4×9×h | | 3x=5,670 | | v^2+7v=30 | | (4x-4)^2=42 | | 2(x+5)10=6 | | -24=8(y-6)-4y | | 4x-5x=4x+10 | | 8t+4(20.55-t)=138 | | 10b-9=41 | | (4x-1)+4=6 | | |4x-1|+4=6 | | 1/25/9=x+22/5x | | 5x^2+183=0 | | 5w+5-4(-2w-1)=3(w-3) | | X—10=3x-12 | | 0=5x^2+183 | | -6x+15x=27 | | 65x=1/18 | | -6x=15x+27 | | 2(3x+4)=2x+3(2x-6) | | 5x/6-(3-2x)/8=(4x-3)/12 | | 2=5t+10+2t | | 0.50(x)=17 | | (12,16)=(1,y) |